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Purpose: Respiratory motion modeling of both tumor and surrounding tissues is a key element in

minimizing errors and uncertainties in radiation therapy. Different continuous motion models have

been previously developed. However, most of these models are based on the use of parameters such

as amplitude and phase extracted from 1D external respiratory signal. A potentially reduced

correlation between the internal structures (tumor and healthy organs) and the corresponding

external surrogates obtained from such 1D respiratory signal is a limitation of these models. The

objective of this work is to describe a continuous patient specific respiratory motion model,

accounting for the irregular nature of respiratory signals, using patient external surface information

as surrogate measures rather than a 1D respiratory signal.

Methods: Ten patients were used in this study having each one 4D CT series, a synchronized RPM

signal and patient surfaces extracted from the 4D CT volumes using a threshold based segmentation

algorithm. A patient specific model based on the use of principal component analysis was

subsequently constructed. This model relates the internal motion described by deformation matrices

and the external motion characterized by the amplitude and the phase of the respiratory signal in

the case of the RPM or using specific regions of interest (ROI) in the case of the patients’ external

surface utilization. The capability of the different models considered to handle the irregular nature

of respiration was assessed using two repeated 4D CT acquisitions (in two patients) and static CT

images acquired at extreme respiration conditions (end of inspiration and expiration) for one

patient.

Results: Both quantitative and qualitative parameters covering local and global measures, includ-

ing an expert observer study, were used to assess and compare the performance of the different

motion estimation models considered. Results indicate that using surface information [correlation

coefficient (CC): 0.998 6 0.0006 and model error (ME): 1.35 6 0.21 mm] is superior to the use of

both motion phase and amplitude extracted from a 1D respiratory signal (CC and ME of

0.971 6 0.02 and 1.64 6 0.28 mm). The difference in performance was more substantial compared

to the use of only one parameter (phase or amplitude) used in the motion model construction.

Similarly, the patient surface based model was better in estimating the motion in the repeated 4D

CT acquisitions and those CT images acquired at the full inspiration (FI) and the full expiration

(FE). Once more, within this context the use of both amplitude and phase in the model building

was substantially more robust than the use of phase or amplitude only.

Conclusions: The present study demonstrates the potential of using external patient surfaces for the

construction of patient specific respiratory motion models. Such information can be obtained using

different devices currently available. The use of external surface information led to the best

performance in estimating internal structure motion. On the other hand, the use of both amplitude

and phase parameters derived from an 1D respiration signal led to largely superior model

performance relative to the use of only one of these two parameters in the model building process.
VC 2012 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4718578]

Key words: respiratory motion, motion modeling, patient external surface, 4D CT, principal com-

ponent analysis (PCA)

3386 Med. Phys. 39 (6), June 2012 0094-2405/2012/39(6)/3386/10/$30.00 VC 2012 Am. Assoc. Phys. Med. 3386



I. INTRODUCTION

Radiotherapy (RT) represents an important modality in the

treatment of cancer. Its goal is to apply radiation to eradicate

a tumor while sparing surrounding healthy tissues. This goal

is not always fulfilled due to different types of errors intro-

duced throughout the course of external beam radiotherapy.

These errors include inaccurate patient setup,1 anatomical

motion and deformation,2 and target volume definition inac-

curacies due to the imaging modality used and the associated

image quality, uncertainty about tumor extent, and=or inter-

observer delineation variation.3 Among these sources of

uncertainty originating from the tumor delineation process to

the beam delivery stage, patient physiological motion is the

primary focus of this paper.

Motion management is important in the RT of thoracic

and abdominal regions since respiratory-induced organ and

tumor motion contribute significantly to errors in patient

anatomy and tumor localization during both the radiotherapy

planning (including the CT acquisition) and delivery pro-

cess.4 A potential solution is the introduction of the temporal

dimension in both the planning acquisition and treatment

processes leading to what is known as 4D RT.5 4D RT con-

sists of characterizing the respiratory motion of each or both

tumor and anatomical structures of interest, creating a treat-

ment plan that takes into account this motion and finally

delivering this plan to the moving tumor and surrounding

healthy tissues.

Within the context of 4D RT, modeling of the respiratory

motion represents an important task. For example in the

case of the CyberKnife SynchronyTM system, used in radio-

therapy, a set of three optical fiducial markers are attached

to a snugly fitting vest the patient wears, to provide a breath-

ing signal. In order to ensure continuous correspondence

between the external and internal motion,6 small gold

markers are also implanted prior to treatment in the vicinity

of the target organ or lesion, allowing a model to be defined

between the motion of the external and internal markers.

This model is updated based on frequent x-ray snapshots of

the position of both marker sets simultaneously.6 Another

example is the Calypso system (Calypso Medical Technolo-

gies, Seattle, US) that uses a technology that can potentially

eliminate the need for an internal–external motion model by

using implanted transponders with an associated wireless

tracking with a frequency of up to 10 Hz.7 However, as with

the CyberKnife SynchronyTM system the issue remains the

use of implanted markers which involves an invasive proce-

dure, in addition to tracking a few well localized internal

markers which does not allow comprehensively accounting

for non local deformations and the motion of normal sur-

rounding to the tumor structures. The last example is the

Xsight
VR

Lung Tracking (XLT) system8 which is an evolu-

tion of the CyberKnife SynchronyTM system, capable of a

real-time tracking of respiratory motion of lung tumors

without the need of implanted markers, although external

fiducials are still necessary. One of the issues associated

with this system is the fact that it does not take into account

tumor free form deformations (only transitional motion is

considered).

To resolve these issues, different deformation field respi-

ratory based models have been previously proposed in the

literature. All of these models relate the motion of the tumor

and the adjacent anatomy to an external surrogate such

as the real time position management system (RPM).9

McClelland10,11 proposed the generation of such a patient

specific model providing displacement fields for any point in

the CT volume and continuous over the respiratory cycle.

However, this model is limited to the description of an aver-

age respiratory cycle. In this case, the predictability of the

model is therefore limited to the information provided by

that average respiratory cycle and not the acquired and

potentially irregular respiratory signal. In addition, this

motion model takes into account one respiratory parameter

which is the phase but ignores all other respiratory parame-

ters such as the amplitude. A model proposed more

recently9,12 relates the displacement fields to both the ampli-

tude as well as the phase of the respiratory cycle using a 2D

B-spline model. Although this model takes into account

respiratory signal irregularities and describes efficiently

respiration-induced organ motion, it requires a good correla-

tion between the 1D respiratory signal (in terms of phase and

amplitude), provided, for example, by the RPM or pressure

belt, and the internal organ and tumor motion. A number of

studies have shown a variable level of correlation between

such 1D respiratory surrogates and the internal respiratory

motion.13–18 On the other hand, a recent study19 has

suggested that the knowledge of a patient’s entire external

surface motion allows a better correlation with the motion of

internal structures. In addition, different recent studies have

proposed the use of external patient surface information for

respiratory motion synchronization in 4D CT imaging.20–22

Therefore, the main objective of this study was to demon-

strate the interest of using the motion of a patient’s entire

surface in comparison with the use of 1D respiratory signals

for the construction of a patient’s specific respiratory motion

model. The 3D surfaces used here are extracted by segment-

ing 4D CT series for each patient, although in practical terms

3D patient surface measurements can be also provided by

systems such as, for example, a time of flight (ToF) camera23

which actively illuminates a patient with an incoherent light

signal. Finally, the use of surface maps for the construction

of a respiratory motion model based on B-spline functions

would require the use of multidimensional B-splines which

are time consuming and as such a compromise for real time

applications. Therefore, in this work, a new approach based

on the use of principal component analysis (PCA)24 has been

used in order to build the patient specific respiratory motion

model.

II. MATERIALS AND METHODS

II.A. Patient datasets

The clinical data used in this study were acquired on a

GE Lightspeed multislice CT MSCT scanner with a cine CT

scan capability.25 Each cine CT scan covered 2 cm

(8� 2.5 mm) with 19–23 images acquired per slice location.

The total axial length covered in the cine CT acquisition for
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each patient was 28 cm. The real-time position management

(RPM, Varian Medical Systems) system was used to obtain

the patient’s respiration signal. CT scans were retrospec-

tively binned to obtain a 4D CT series composed of ten

phases (0%, 10%,… 90% of a mean respiratory cycle).

These phases where sorted using an improved phase binning

approach by rejecting parts of the respiratory cycle and cor-

responding CT images associated with irregular respiration

as described by Pan et al.25 Each binned thoracic CT volume

had 512� 512� 112 voxels, with dimensions 0.97� 0.97

� 2.5 mm3 corresponding to the x, y, and z directions,

respectively. The obtained CT volume corresponding to the

full expiration was used as the “reference volume”. Ten

patient datasets were used in this study, all of them having a

4D CT acquisition. Amongst these ten patients, two of them

had also one repeated 4D CT acquisition within a two week

period from the first 4D CT acquisition, while the last of the

patients had also two additional CT acquisitions [one at full

inspiration (FI) and another at full expiration (FE)].

II.B. Motion model reconstruction

In the previous work,9,12 a respiratory motion model was

proposed using a 2D B-spline based on a deformation field

as a function of the amplitude (defined as the value of the

signal at a given time point) and the phase of an 1D respira-

tory signal. This model was constructed through a 2D fitting

of the x, y, and z displacements obtained for every control

point of a B-spline based elastic registration approach26

applied on the 4D CT images of each patient. The registra-

tion approach uses a local spatial parametric model for the

deformation based on B-splines and reformulates the regis-

tration task as a global optimization problem. The obtained

transformation Ut(x) between the frame f(x,t) at time t and

the reference frame f(x,0) was defined as a linear combina-

tion of B-spline basis functions, located in a rectangular

grid

UtðxÞ ¼ xþ
X
j2ZN

cjbrðx=h� jÞ; (1)

where br is a tensor product of centered B-splines of degree,

r and j are the indices of the grid location. The spacing

between the grid h determines the number of parameter cj to

be optimized and the final rigidity of the solution. The regis-

tration is then formulated as an optimization procedure that

minimizes the sum of squared differences metric to find the

best transformation parameter cj. Finally, to improve speed

and robustness, a multiresolution approach is used in both

the image and the transformation space.26 The performance

of this algorithm has been previously evaluated on five

healthy volunteers 4D MRI datasets comparing the estimated

trajectories with the manual tracking provided by an

expert.27 Quantitative results of motion estimations using

this approach resulted in a mean error of less than 1 mm for

all the analyzed 4D sequences.27

The value of every displacement was effectively plotted

against the amplitude and the phase of the corresponding re-

spiratory signal. Finally, a B-spline was fitted to the data

f ðx; yÞ ¼
X3

k¼0

X3

l¼0

bkðsÞblðtÞuðiþkÞðjþlÞ; (2)

where i¼floor(x)� 1, j¼floor(y)� 1, s¼ x� floor(x),

t¼ y�floor(y), u is the value of the (iþ k) and (jþ l) control

points and bk, bl are uniform cubic b-spline basis function9

defined as

b0ðtÞ ¼
1� t3

6

b1ðtÞ ¼
3t3 � 6t2 þ 4

6

b2ðtÞ ¼
�3t3 þ 3t2 þ 3tþ 1

6

b3ðtÞ ¼
t3

6
;

(3)

where, 0� t< 1. They serve to weight the contribution of

each control point to f (x,y) based on its distance to (x,y).

This model cannot be easily extended to take into account

the availability of patient surface information which requires

a higher than 2D B-spline (amplitudeþ phase) function

order, making it extremely complex while significantly

increasing the model building computational time (�9 min

for a 2D B-spline model construction versus �340 min to

build a 3D B-spline model). Thus, an approach based on

PCA was privileged in this study for the construction of the

patient specific respiratory motion model. The obtained

model will relate the internal motion described by the defor-

mation matrices and the external motion characterized by

the amplitude and the phase of the respiratory signal in the

case of the RPM or using regions of interest (ROI) in the

case of the patients’ surface utilization.

PCA is a method used to identify data patterns and

express this data in order to emphasize their distinctness and

similarities. PCA can be used to compress these data by

reducing dimensionality without much loss of information.

In this study, PCA was applied on the internal motion

described precisely by the displacement vectors and the cor-

responding external motion described by surrogates such as

the RPM or the external surfaces. The displacement vectors

are vectors obtained from registering all 4D CT frames on

the reference frame (full expiration CT). The registration

algorithm used is based on B-splines.26

The set of displacement vectors are placed in a vector in

the following manner:24

dj ¼ u1;1;j; u1;2;j; u1;3;j;…; uM;3;j;s1;j; s2;j;…; sN;j

� �T
; (4)

where, um,i,j is the ith component of displacement for the

voxel m at time point j (0< j< J, where J is the number of

phase specific frames, 10 in this study), i¼ 1,2,3 for the x, y,

z displacement direction, respectively, M is the total number

of voxels, and sn,j is the displacement of the nth surrogate at

time point j, where n¼ 1,2,…, N (N is the total number of

surrogates per deformation field) and j¼ 1, 2, …, J.

In the case of the 1D respiratory signals, the two motion

description surrogates used are the phase (N¼ 1), the ampli-

tude (N¼ 1), or both the phase and the amplitude (N¼ 2) of
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the respiratory signal. In the case of using patient surface in-

formation, these were extracted from the 4D CT volumes

using a threshold based segmentation algorithm.28 Each

extracted surface corresponds to a binary 3D volume, with the

voxels constituting the patient’s surface set to 1 and all other

voxels set to 0. In addition, a z-map of the 3D volume repre-

senting the distance of the patient skin from a given plane was

calculated. This latter map corresponds to the distance map

that can be acquired by a Time of Flight camera,23 capable of

yielding 3D surface maps (acquisition rate >30Hz) in which

each point corresponds to the measured Euclidean distance

between the camera and the object. Such a device could be

used in the clinical setup for dynamically measuring a

patient’s external surface. Ten square ROIs (5� 5 pixel each)

were subsequently placed, according to the literature recom-

mendation,5,19 between the xyphoid process and the umbilicus

on the calculated z-map (N¼ 10). The size, shape, and place-

ment of these ROIs have been optimized in our previous

work19 that studied the correlation between different patient

surface ROI parameters (size, shape, and position) and the

tumor as well as normal structures’ motion based on experts’

identification of internal anatomical landmarks.

In order for the PCA to work properly the mean is sub-

tracted from each data dimension and a matrix D is

constructed:

D ¼ ½~d1;…; ~dj;…; ~dJ�; (5)

where, ~dj ¼ dj� �d are centered vectors and �d is the mean

vector representing the average motion, given by

�d ¼ 1

J

XJ

j¼1

dj: (6)

The next step in the PCA procedure is to calculate the eigen-

values and eigenvectors of the covariance matrix DDT. The

matrix D is a (3MþN)*J (3MþN has a typical value

of about 7� 106), and therefore the size of DDT is

(3MþN)�(3MþN). So calculating the eigenvectors of this

covariance matrix is computationally expensive. Let X be an

eigenvector of the matrix DTD with eigenvalue k, multiply-

ing DDT by DX leads to

DDTðDXÞ ¼ DðDTDXÞ ¼ kDX: (7)

So DX is an eigenvector of the covariance matrix DDT and k
its corresponding eigenvalue. k is an eigenvalue of both DDT

and DTD. As a result, all eigenvalues of DDT are zero except

those with non zero eigenvalues for DTD. Therefore, we can

calculate eigenvalues and eigenvectors for DTD (J*J), obtain-

ing the corresponding non zero eigenvalues and eigenvectors

E¼DX of DDT. Since
PJ

j¼1
~dj ¼ 0, we have only J� 1 inde-

pendent measurements and therefore J� 1 eigenvectors of

DTD (and consequently of DDT) having nonzero eigenvalues.

Finally, a good approximation of each possible motion state

d(t) at an arbitrary time point t can be expressed as a weighted

sum of the K eigenvectors ek with the largest eigenvalues

dðtÞ � �d þ
XK

k¼1

wkðtÞek: (8)

Using the centered vectors extracted from Eq. (8) and using

the matrix notation

~d � EW; (9)

where E¼ [e1, …, ek] consists of the first K eigenvectors and

W¼ […, wk, …] are corresponding weights. Given that
~d ¼ ½~u; ~s�T , Eq. (6) can be split into two separate components

~u � EuW

~s � EsW
; (10)

where Eu and Es are constructed from the upper 3M rows

and lower N rows of E, respectively. W can be eliminated by

assuming that Es is invertible, leading to

~uðtÞ ¼ EuE�1
s ~sðtÞ ¼ B~sðtÞ; (11)

where ~uðtÞ is the internal motion described by the deforma-

tion fields and ~sðtÞ is the external motion described in the

case of the RPM respiratory signal by the amplitude alone,

the phase alone, or both amplitude and phase of the respira-

tory signal, and by the ten regions in the case of using patient

external surfaces. B is the matrix representing the patient

motion characteristics. Considering the question of computa-

tional cost the complete model building step is �30 min on

an AMD AthlonTM 64 X2 Dual Core Processor which is

almost equivalent to the time necessary for completing the

first 4D CT image registration step (�28 min on the same

processor). On the other hand, the use of the model for the

estimation of the 4D CT images is almost instantaneous

(<1 s).

II.C. Motion model evaluation

The evaluation of the proposed patient specific motion

model described by Eq. (11) has been assessed by deriving

CT images using on one hand the developed model based on

the respiratory signal phase “PhModel”, amplitude

“AmpModel” or both of them “AmpPhModel”, and on the

other using the developed model based on the surface maps

extracted from the 4D CT series “SurfaceMapModel”. The

leave-one-out approach was used for the comparison of these

different estimation models, where at each estimation step,

the acquired CT image to be predicted was excluded from

the motion construction step.

The second part of the evaluation was concentrated on the

capability of the models based on the different surrogate

measures in terms of reproducibility within the context of

the irregular nature of respiratory motion. Subsequently, the

accuracy of the proposed models was tested on two repeated

4D CT scans acquired on the same patient within a two

week period. This was done by creating the model using the

first 4D CT series for each of the two patients and evaluating

it by generating both of the two 4D CT acquired datasets

(that of week 1 and week 3). In addition, to further evaluate

the ability of the proposed models to deal with extreme re-

spiratory irregularities the model created using the 4D CT

series of one of the patients was used to generate, and com-

pared to the corresponding acquired, static CT images for

the same patient at full inspiration and full expiration.
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The CT volumes predicted by each model have been

subsequently compared with their corresponding acquired

CT volumes. First, profiles were used to perform local

image comparisons between the model derived and corre-

sponding acquired CT volumes. Second, the correlation

coefficient (CC) was used for global comparison purposes.

It measures a linear affine relation between the intensity of

the compared images. The CC between two images A and

B is given by

CCðA;BÞ ¼
X

i

X
j

ði� mAÞðj� mBÞffiffiffiffiffi
rA
p� �

ð ffiffiffiffiffirB
p Þ

pij; (12)

where i and j are the voxel intensities of the two images

to be compared, m is the mean of the image intensities,

r is the standard deviation, and pij is the joint probabil-

ity. In addition to the correlation coefficients, image

differences were used to provide global CT image

comparisons.

Finally, a clinical expert was asked to select the same eas-

ily identifiable anatomical landmarks in both the acquired

and modeled generated CT images.29 The error between

each landmark in the reference and the corresponding model

generated CT volumes was subsequently calculated, leading

to a model error (ME) given by

ME ¼ 1

n

Xn

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqk

x � rk
xÞ

2 þ ðqk
y � rk

yÞ
2 þ ðqk

z � rk
z Þ

2;
q

(13)

where qk
x; qk

y; qk
z are the x, y, and z coordinates, respectively,

of the kth landmark in the acquired CT, and rk
x ; rk

x ; rk
x are the

x, y, and z coordinates, respectively, of the kth landmark in the

model generated CT. The ME is in mm and n is the number of

anatomical landmarks (13 used in this study). These land-

marks19 were identified throughout the thoracic field covered

by the 4D CT images including both regions of large and small

respiratory motion.30–34 Examples of the landmarks used

include the right apex, left apex, carina, highest left, and right

diaphragm position and the high, low, left, and right bounda-

ries of the tumor. A statistical comparison between the results

of the different estimation models for each of the evaluation

parameters considered was assessed using a paired t-test

(p values< 0.05 were considered statistically significant).

III. RESULTS

At each estimation step, five different CT volumes were

compared; namely, the acquired CT (original data) and pre-

dicted CT volumes using the PhModel, AmpModel, AmpPh-

Model, and the SurfaceMapModel. Figure 1(a) shows an

FIG. 1. (a) Patient 1 original, CT generated using the

surfaceMapModel, CT generated using the AmpPhMo-

del, CT generated using the AmpModel and the CT

generated using the PhModel. (b) Corresponding left

diaphragm profile comparison.
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example of the same slice for each of these CT volumes for

one of the ten patient datasets used in this study. The corre-

sponding left diaphragm profile results are shown in

Fig. 1(b) demonstrating, in the comparison with the original

CT image, a small advantage of the SurfaceMapModel over

the AmpPhModel, and a clear advantage of the two previ-

ously mentioned models over the PhModel and the

AmpModel.

Two global comparisons were also considered. Figure 2(a)

shows a slice of an original acquired CT image normalized

to a scale of 0–255 in order to compare with the magnitude

of the subsequent difference images. The difference image

between the original acquired CT [Fig. 2(a)] and the corre-

sponding model predicted CT using the SurfaceMapModel,

AmpPhModel, AmpModel and PhModel is shown in Figs.

2(b)–2(e), respectively. The larger differences were observed

in the case of the use of the AmpModel and PhModel (�12

to 9 and �7 to 7, respectively). In contrast smaller differen-

ces were measured for the use of the AmpPhModel (�5 to

þ5) and the SurfaceMapModel (�4 to þ4).

The correlation coefficient results for all ten patients

between the original and the corresponding model derived

CT volumes demonstrated a better correlation between the

acquired and the SurfaceMapModel estimated CT volumes

(0.998 6 0.0006). On the other hand, the use of the AmpPh-

Model using both the amplitude and phase of the respiratory

signal in the estimation model leads to superior correlation

results (0.971 6 0.02) relative to the use of either of the two

parameters alone for the derivation of the 4D CT volumes

(0.85 6 0.077 and 0.81 6 0.082 for the AmpModel and

PhModel, respectively). The differences in the correlation

coefficients between all of the four considered motion mod-

els were statistically significant (p-value< 0.0005).

Figure 3(a) shows a comparison of the ME results for the

ten patient datasets considered based on the expert study

using the anatomical landmarks for all of the different esti-

mation models. These errors are >20% for four patients and

<5% for only one patient. As can be seen in Fig. 3(b), the

proposed SurfaceMapModel resulted in the smaller mean

model error of 1.35 6 0.21 mm, better than the AmpPhMo-

del with a larger mean error of 1.64 6 0.28 mm. Finally, the

two single parameter models led to the larger errors with

3.63 6 0.42 and 5.08 6 0.77 mm for the AmpModel and the

PhModel, respectively. The differences in the model error

FIG. 2. (a) A Normalized CT image. Axial view of the

difference image between the original acquired CT and

the predicted image using the (b) SurfaceMapModel,

(c) AmpPhModel, (d) AmpModel, and the (e)

PhModel.
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between all of the four considered motion models were also

statistically significant (p-value< 0.0008).

Figure 4 shows a comparison between the ME (mm) of

the SurfaceMapModel, AmpPhModel, AmpModel, and the

PhModel of the two patients with the two 4D CT acquisi-

tions. The proposed SurfaceMapModel resulted in the smaller

mean model error of 1.57 6 0.21 mm (1.8 6 0.17 mm)

for the estimation of the first (and second) 4D CT image se-

ries, which was better than the AmpPhModel with a larger

mean error of 1.9 6 0.16 mm (3.04 6 0.27 mm). Finally and

within the same context, larger errors were observed when

considering one of the two single parameter models with

FIG. 3. (a) Comparison between the ME (mm) of the SurfaceMapModel, AmpPhModel, AmpModel, and the PhModel of all ten patients used in this study. (b)

Mean and standard deviation of this ME.

FIG. 4. Comparison between the ME (mm) of the Sur-

faceMapModel, AmpPhModel, AmpModel, and the

PhModel for the estimation of two different 4D CT se-

ries acquired on two patients. All models considered

were constructed using the first of the two 4D CT

acquisitions and subsequently evaluated for the estima-

tion of both 4D CT series.
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4.36 6 0.29 mm (5.66 6 0.33 mm) and 5.51 6 0.67 mm

(7.05 6 1.51 mm) for the AmpModel and the PhModel,

respectively. By calculating the mean model error percent-

age increase between the estimation of the first (used in the

model creation) and the second 4D CT series for every

model considered, the SurfaceMapModel demonstrated the

best robustness with 12.7% increase compared to the

AmpPhModel, AmpModel, and the PhModel with a mean

error percentage increase of 37.5%, 22.9%, and 21.8%,

respectively.

Finally, results considering the ability of the model to

handle extreme irregular respiration signal positions indicate

that the proposed SurfaceMapModel can generate these

extreme irregular positions with an error of 1.92 and 2.21 for

the FI CT and the FE CT acquisitions, respectively. Larger

errors of 2.85 and 3.01 were measured for the generation of

the FI CT and the FE CT images using the AmpPhModel.

As shown in Fig. 5, within the same context the use of the

single parameter models AmpModel and PhModel led to

even larger model errors.

IV. DISCUSSION AND CONCLUSIONS

Modeling of respiratory induced motion is an essential

part of accounting for one of the most important parameters

compromising the accuracy of both planning and delivering

radiation therapy. As such it has a direct impact on the dose

received by tumors but also organs at risk during high preci-

sion radiotherapy. Different models have been previously

proposed for the description of patient specific respiratory

motion. Intra patient and interpatient variability in respira-

tory signals limits the accuracy of such proposed models,

especially those parameterized by the characteristics

extracted from a 1D respiratory cycle.

The development and use of alternative technology, such

as, for example, a ToF camera,35 may allow real-time moni-

toring of the complete patient surface making available sub-

stantially more information. This enhanced information may

subsequently lead to better correlation between the external

and the internal normal tissues’ and tumor motion.18 As

shown in the current study, the use of such 3D external

surfaces for the creation of a patient specific motion model

allows a higher accuracy than using the combination of am-

plitude and phase from a patient’s 1D respiratory signal.

This difference and advantage are much larger if one consid-

ers only one of the two parameters extracted from the 1D

respiratory signal. For all ten patients included in this study,

the advantage of using the surface was systematic over the

phase and the amplitude of the 1D RPM respiratory signal.

In order to allow the creation of such a patient specific

motion model based on external 3D patient surfaces a PCA

approach was implemented. This is in contrast with the use

of B-splines which have been proposed up to now for patient

specific motion model construction considering the use of an

1D respiratory signal amplitude, phase or a combination of

the two parameters. The PCA approach was privileged in

this work for its simplicity relative to the use of higher order

B-spline functions which would have been necessary in tak-

ing into account the availability of surface maps.

The patient specific model developed in this work can be

used to generate a 3D CT image corresponding to any patient

surface requiring only one CT reference volume. The pro-

posed model was shown to be efficient, including its ability

to deal with respiratory signal irregularities. This capability

was assessed on a couple of patients by using the respiratory

motion models developed based on a 4D CT acquisition, in

estimating a second 4D CT image series of the same patient

acquired within a couple of weeks of the first 4D CT acquisi-

tion. In addition, for another patient, the different respiratory

motion models derived by using the 4D CT images were

used in the estimation of the CT images acquired at extreme

points in the respiratory cycle (end of inspiration and expira-

tion) well outside the limits of the respiratory signal ampli-

tude registered during the initial 4D CT acquisition. In both

cases the surface derived respiratory motion model led to the

smaller average errors with <2.2 mm in comparison to

3–8 mm for the models derived using the amplitude, phase

or a combination of the two parameters. Within this context,

no assumption is required concerning the similarity between

the respiratory signal variations during the data acquisition

for the model creation and that recorded throughout the

course of treatment delivery during the radiation therapy

process.

However, previous day to day variation studies using

repeat 4D CT scans36,37 have shown considerable variation

in the respiratory motion of individual patients. The majority

of the variation can be approximated as baseline shifts.38 In

these cases, the underlying anatomy and the motion trajecto-

ries are relatively stable, but the baseline position of the

tumor relative to other structures varies. As shown in this

study our model was able, through the use of the external

patient surface variation, to efficiently manage such issues.

However, this may be more complicated in cases where, rel-

ative to the initial 4D CT scan used in the motion model con-

struction, severe respiratory (for example a change from

thoracic to abdominal movement) or patient anatomy (as a

result of treatment) changes occur. Future studies will con-

centrate on testing the model on larger number of patient

datasets in order to allow the evaluation of the model under

FIG. 5. Comparison between the ME (mm) of the SurfaceMapModel,

AmpPhModel, AmpModel, and the PhModel constructed using a 4D CT ac-

quisition in generating acquired full inspiration (FI) and full expiration (FE)

CT images of the same patient.
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such conditions. Solutions to potential issues that may arise

will include, a more frequent model update during treatment,

a model update strategy based on the acquisition of two

static CT images (one at FI and one at FE), or patient respi-

ration coaching.

The accuracy of the proposed model depends on the accu-

racy of the deformable registration algorithm as well as on

the correlation between the respiratory signal and the inter-

nal deformation. The accuracy of the registration algorithm

used in this work has been previously assessed.39,40 On the

other hand although some studies have indicated a high cor-

relation between external markers and internal motion, in

almost all of these studies the observed correlation is charac-

terized by a high inter and intrapatient variability as well as

being dependent on the position of the external markers or

monitoring devices. Our results demonstrate a better correla-

tion between the internal structure motion and the patient

surface than the correlation with the 1D RPM respiratory

signal.

Finally, the accuracy of a respiratory motion model may

also depend on the 4D CT sorting method used. In this study,

we have used an improved phase binning approach25

accounting for the irregular nature of respiration. An alterna-

tive for the 4D CT binning step may be the use of a combina-

tion of respiratory phase, displacement, and velocity.41 Such

alternative binning approaches may further improve the ac-

curacy and robustness of the different respiratory motion

models considered in this work.

One limitation of the current study is that the external

patient surfaces used in the patient specific motion model

creation were obtained though the segmentation of the

patient skin from corresponding 4D CT images. As such the

errors in terms of accuracy with which an external device,

such a ToF camera, can determine in a real-time fashion the

motion amplitude due to respiration throughout a patient sur-

face, have not been considered in this work. Experimental

studies have suggested that this accuracy may be between 1

mm and 2 mm, with a minimum variability throughout the

camera’s field of view.23,42 These experimental accuracy

estimations, and their potential impact on the accuracy of the

subsequent derived respiratory motion model, have to be

verified by building models using datasets comprising simul-

taneous patient 4D CT acquisitions and external surface

measurements using such devices.

A second limitation, which is also linked with the lack of

real time surface measurements associated with the patient

4D CT studies used in this work, is that the 4D CT binning

is done prior to the patient’s surface extraction based on the

CT respiratory frames themselves. Considering the capabil-

ities of the camera ToF systems, the patient surface can in

principle be monitored during the 4D CT acquisition at a

maximum rate of 30 Hz. Therefore, the multiplicity of surfa-

ces for a corresponding CT frame has not been considered in

this work. Studies allowing an optimization of the patient

external surface acquisition rates to be used in clinical prac-

tice will need to be carried out in the future with monitoring

systems, such as for example camera ToF technology capa-

ble of monitoring the entire patient surface at sufficiently

high frequency. This optimization step will need to consider

the potential impact of the patient surface acquisition rates in

terms of the accuracy in characterizing the patient surface

motion but also its subsequent impact in the proposed

motion model accuracy. One solution to cope with this issue

will be to calculate a mean surface corresponding with each

CT respiratory frame, which may in turn help to decrease the

potential ToF camera surface acquisition error. However,

one has to ensure that such averaging will not compromise

the accuracy of characterizing the patient surface motion and

associated internal structure motion, particularly within the

context of irregular breathing patterns.

Finally, the present study demonstrates the potential of

using external patient surfaces for the construction and appli-

cation of a patient specific respiratory motion model. The

validation of these results on ten patients proves that the use

of surfaces for the construction of patient specific motion

models is more accurate than simply using the 1D respira-

tory signal amplitude, phase or a combination of the two.

Our results suggest that the proposed method is a potentially

useful tool for predicting respiration-induced motion in a

patient’s 4D images during simulation and treatment, includ-

ing variability in breathing patterns. Such a tool may be ap-

plicable to treatment planning and evaluation of treatment

delivery.
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